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be avoided if aliasing errors are small compared to trunca-
tion errors.Aliased and dealiased numerical simulations of a turbulent chan-

nel flow are performed using spectral and finite difference methods. The problem of aliasing errors in spectral simulations
Analytical and numerical studies show that aliasing errors are more of turbulent flows has been discussed in the literature [4–7].
destructive for spectral and high-order finite-difference calculations It has been demonstrated that, depending on the form of
than for low-order finite-difference simulations. Numerical errors

the nonlinear terms [5] in the Navier–Stokes equations,have different effects for different forms of the nonlinear terms in
aliased spectral simulations can become unstable, exhibitthe Navier–Stokes equations. For divergence and convective forms,

spectral methods are energy-conserving only if dealiasing is per- decay, or give reasonable results. Zang [5] performed sev-
formed. For skew-symmetric and rotational forms, both spectral eral spectral simulations of transition and turbulence in
and finite-difference methods are energy-conserving even in the incompressible flow and reported that, without dealiasing,
presence of aliasing errors. It is shown that discrepancies between

the simulations with convective and divergence forms ofthe results of dealiased spectral and standard nondialiased finite-
the nonlinear terms were numerically unstable, whereasdifference methods are due to both aliasing and truncation errors

with the latter being the leading source of differences. The relative the computations with the rotational form produced inac-
importance of aliasing and truncation errors as compared to subgrid curate results. The aliasing errors associated with the rota-
scale model terms in large eddy simulations is analyzed and dis- tional form were reported to be even more damaging in
cussed. For low-order finite-difference simulations, truncation er-

simulations of transition. The poor behavior of the rota-rors can exceed the magnitude of the subgrid scale term. Q 1997

tional form was also reported earlier by Horiuti [8] whoAcademic Press

carried out large eddy simulations of turbulent channel
flow. No dealiasing was performed in that study. Horiuti
found that turbulence decayed when the rotational form1. INTRODUCTION
of the nonlinear terms was used. He concluded that such
a poor behavior resulted because of the large truncationLarge-eddy simulations of turbulent flows are normally

performed on grids that are just fine enough to resolve the error of the second-order finite-difference discretization of
the rotational form in the wall-normal direction. However,important large flow structures, and numerical discretiza-

tion errors on such grids can have considerable effects on Zang [5] pointed out that the real reason for the poor
performance of the rotational form was the aliasing errorsthe simulation results. Numerical errors are usually divided

into two types: truncation errors and aliasing errors. Trun- in the spectral directions. The earlier calculations of Kim
et al. [9] and others [5, 7] confirmed this observation bycation errors result from numerical evaluation of deriva-

tives. Aliasing errors result from evaluation of the nonlin- demonstrating that the rotational form performed well
when aliasing errors were removed. Several previous stud-ear terms on a discrete grid. Unlike truncation errors,

aliasing errors can be removed from some simulations and ies [5, 8, 10, 11] reported that the skew-symmetric form
gives fairly good results even in the presence of aliasinga method of controlling aliasing errors is known in the

Fourier space [1–4]. Dealiasing has primarily been per- errors. Blaisdell et al. [10, 11] analyzed various forms of
the nonlinear terms and showed that the skew-symmetricformed in incompressible flow simulations. Suppression of

aliasing errors in compressible flow simulations is difficult form caused a reduction of aliasing errors.
Although the role of aliasing errors in spectral simula-due to the division by density required in numerical formu-

lations. Lee et al. [3] suggested using a specific-volume tions has been the subject of many studies, the effect of
aliasing errors in finite-difference simulations and the rela-(instead of density) formulation for dealiasing purposes.

However, complete dealiasing is computationally expen- tive importance of aliasing errors as compared to trunca-
tion errors are still unclear. There is no theoretical analysissive and difficult in complex geometries. Dealiasing could
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available to explain why aliasing errors are destructive for ties of numerical discretizations is examined and discussed.
The results of the numerical tests are reported and dis-some forms of nonlinear terms but are apparently harmless

for others. Also, the effects of aliasing and truncation errors cussed in Section 4. In Section 5, we give a brief summary
of the results and conclusions.on subgrid scale models in large eddy simulations have

not been carefully studied. In numerical simulations of
turbulent flows using low-order schemes, numerical errors 2. CONSERVATION PROPERTIES
can be of the same order of magnitude as subgrid scale
terms [12]. To obtain a numerically stable solution of Eqs.(1.1) and

The objective of the present study is to understand the (1.2), one needs to employ a numerical method that con-
role of numerical errors in simulations of turbulent flows. serves mass, momentum, and kinetic energy in a discrete
We study the effects of aliasing and truncation errors in sense [14, 15]. By conservative discretization we mean that,
both spectral and finite-difference simulations. We also in the absence of external forces, viscous dissipation, and
examine the effect of numerical errors on subgrid scale time advancement errors, the mass, momentum, and ki-
models in large eddy simulations. For this study, we con- netic energy in a control volume can change only via flow
sider an incompressible-fluid flow described by the Navier– through the boundaries. Thus, in the case of a turbulent
Stokes equations channel flow with periodic boundary conditions in the

streamwise and spanwise directions and no-slip boundary
conditions on the walls, we have­ui

­t
5 Hi 2

­p
­xi

1
1

Re
­2ui

­xj ­xj
, (1.1)

­
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uidV 5 0 momentum conservation (2.1)

­ui

­xi
5 0, (1.2)

­

­t
E

V

1
2

u2
i dV 5 0 energy conservation. (2.2)where Re is the Reynolds number and Hi are the convec-

tive terms. As a test case, a fully developed turbulent chan-
nel flow at Reynolds number, Rec 5 23,000, based on the

From (1.1), in the absence of viscous dissipation, we findcenterline velocity, Uc , and the channel half-width, d, is
thatconsidered. The channel code used for this study was ini-

tially written as a pseudo-spectral/B-spline code with Fou-
rier spectral method in homogeneous directions (stream- ­

­t
E

V
uidV 5 E

V
HidV 5 0 (2.3)wise and spanwise) and B-spline method in the wall-normal

direction [13]. The code was then modified to employ vari-
ous finite-difference schemes by using the appropriate

andmodified wavenumbers for computations of the derivatives
in the code. In this way, an objective comparison of the
effect of aliasing and truncation errors in simulations with
different methods can be performed. To compare the per-

­
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i dV 5 E

V
ui SHi 2

­p
­xi
D dV 5 0. (2.4)

formance of various methods with and without aliasing
errors, we considered the following methods in periodic
homogeneous (streamwise and spanwise) directions: Fou- Since (2.3) and (2.4) involve integrals over the nonlinear
rier spectral methods, second- and fourth-order finite-dif- terms Hi , the form of these terms is important for conserva-
ference methods, the sixth-order Padé scheme on nonstag- tion properties. The nonlinear terms of the incompressible
gered grids, and the second-order finite-difference method Navier–Stokes equations (1.1) can be written in several
on a staggered grid. In all cases, a B-spline-based method analytically equivalent forms: rotational form
was used in the wall-normal direction [13]. The main ad-
vantage of using the B-spline method for this study is that
the accuracy of the method can be easily varied by changing Hi 5 2uj S­ui

­xj
2

­uj

­xi
D2

­

­xi

1
2

ujuj , (2.5)
the order of the B-splines and, therefore, the numerical
accuracy in the wall-normal direction can be controlled.

The outline of the paper is as follows. The next section divergence form
deals with conservation properties and different forms of
the nonlinear terms. In Section 3, an analysis of numerical
errors for spectral and finite difference methods is pre- Hi 5 2

­uiuj

­xj
, (2.6)

sented. The effect of these errors on conservation proper-



312 KRAVCHENKO AND MOIN

convective form

Hi 5 2uj
­ui

­xj
, (2.7)

and skew-symmetric form

Hi 5 2
1
2 S­uiuj

­xj
1 uj

­ui

­xj
D . (2.8)

To show that (2.3) and (2.4) are valid for the rotational
and skew-symmetric forms of Hi , one needs to use integra-
tion by parts and the continuity equation (1.2). To show the

FIG. 1. Modified wavenumbers: (——) Spectral; (–––) 2nd ordervalidity of (2.3) and (2.4) for the divergence and convective
finite difference; (? ? ?) 4th order finite difference; (- - -) 6th order Padéforms of Hi one also needs to employ the identity
scheme.

uj
­ui

­xj
5

­uiuj

­xj
2 ui

­uj

­xj
. (2.9)

the sixth-order Padé scheme [16] are shown in Fig. 1 to-
gether with the wavenumber of the spectral method. The
spectral method gives an exact representation of the firstIn further discussion, (2.9) is referred to as the product
derivative up to a grid resolution. In contrast, finite-differ-rule. In computer simulations, the numerical equivalents
ence methods exhibit large errors at high wavenumbers.of integration by parts and, if necessary, of the product
Even though more accurate finite-difference schemes pro-rule should be valid in order to have a conservative discreti-
vide better approximations at higher wavenumbers, thezation. In other words, to consider the effect of numerical
accuracy is always better at low wavenumbers than at higherrors introduced by a method on conservation properties
wavenumbers.(2.3) and (2.4), we need to understand the effects of aliasing

Aliasing errors appear whenever nonlinear terms areand truncation errors on the numerical equivalents of inte-
computed numerically, i.e., when two functions aregration by parts and the identity (2.9).
multiplied in a discrete space. Consider Fourier expansions
of two discrete functions u and v:

3. TRUNCATION AND ALIASING ERRORS

Truncation errors result from discrete approximation of uj 5 ON/221

n52N/2
ûnei(2f/N)jn and vj 5 ON/221

m52N/2
v̂mei(2f/N)jm.

derivatives in simulations. It is instructive to consider trun-
cation errors in terms of the modified wavenumber of a (3.2)
numerical scheme. For example, a finite-difference approx-
imation of the first derivative of a function u(x) is Forming the pointwise product wj 5 ujvj (no summation

on j) and computing the Fourier coefficients of w, we obtain
du
dx

5
du
dx

1 truncation errors. (3.1) ŵk 5 O
n1m5k

ûnv̂m 1 O
n1m5k6N

ûnv̂m . (3.3)

In Fourier space, (3.1) becomes The second term in the expression for ŵk is the aliasing
errors. Clearly, the contribution of aliasing errors is larger
at higher wavenumbers.du

dx
5 ik9(k)û, In numerical approximation of derivatives of products,

`

aliasing errors are modified by truncation errors. These
modifications occur when aliasing errors are multiplied by
modified wavenumbers. Thus, in spectral methods, multi-where k9(k) is a modified wavenumber and ˆ indicates

the Fourier transform. The modified wavenumbers for the plication by high wavenumbers enhances aliasing errors.
In contrast, in finite-difference schemes, the modifiedsecond- and fourth-order central difference methods and
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wavenumber decreases at high wavenumbers and multipli- For spectral and finite-difference methods k9(2n) 5
2k9(n) and, setting m 5 2n, we can write k9(m) 5cation by it reduces aliasing errors.

Our objective is to analyze the effects of both truncation k9(2n) 52k9(n) to modify thefirst term of (3.5).The second
term in (3.5) can be simplified to ik9(2N/2)uN/2 f̂2N/2 sinceand aliasing errors on the identities required for showing

conservation, namely, a numerical equivalent of the inte- n 1 m 5 6N only for m 5 n 5 2N/2. This term becomes
zero if k9(2N/2) 5 0 or f̂2N/2 5 0. In finite-difference meth-gration by parts (summation by parts in a discrete sense)

and the product rule of differentiation (i.e., discrete equiva- ods, the condition k9(2N/2) 5 0 holds. On the other hand,
in pseudo-spectral methods it is necessary to set f̂2N/2 to zerolent of the identity (2.9)).
to perform differentiation [4]. With these conditions, (3.4) is

3.1. Summation by Parts satisfied even in the presence of aliasing errors, i.e.,

Consider the two functions u(x) and f(x) on a one-
dimensional domain with periodic boundary conditions. E u

df
dx

dx R O
n1m50

ûnik9(m) f̂m 1 O
n1m56N

ûnik9(m) f̂m

From integration by parts, we have

5 2 O
n1m50

ûnik9(n) f̂m R 2 E f
du
dx

dx.E
Vx

u
df
dx

dx 5 2 E
Vx

f
du
dx

dx, (3.4)

Thus, aliasing errors do not affect the summation by parts
where the boundary terms vanish due to periodicity. Man- in finite-difference or spectral calculations and, therefore,
sour et al. [17] showed that the numerical analogue of discretizations of rotational and skew-symmetric forms are
integration by parts, i.e., summation by parts on a discrete conservative with and without dealiasing. Also, the above
domain, holds for both central finite-difference schemes analysis is carried out with a generic real modified wave-
and spectral methods. Here, we point out that (3.4) is number (for central finite-difference schemes) and, there-
satisfied even in the presence of aliasing errors. The Fourier fore, it can be concluded that truncation errors do not
coefficients of a discrete function w constructed so that cause violation of the summation by parts [17].

3.2. Product Rule of Differentiation
wj 5 uj

df
dx Uj

5 Ok5N/221

k52N/2
ŵkei2fkj/N

To illustrate the effect of truncation and aliasing errors
on the product rule, we consider two forms of the nonlinear
terms which are equivalent analytically:are given as

ŵk 5 O
n1m5k

ûnik9(m) f̂m 1 O
n1m5k6N

ûnik9(m) f̂m . N1 5
duv
dx

(3.6)

N2 5 u
dv
dx

1 v
du
dx

. (3.7)A numerical analogue of integration on a discrete domain
is simple summation, i.e.,

In spectral calculations, the Fourier coefficients of the
nonlinear terms areE

Vx

w(x)dx R ON21

j50
wj 5 ON21

j50
ON/221

k52N/2
ŵkei2fkj/N,

N̂1(k) 5 ik O
n1m5k

ûnv̂m 1 ik O
n1m5k6N

ûnv̂m (3.8)
where the grid size Dx is omitted for simplicity. For the
Fourier expansion functions, we have N̂2(k) 5 i O

n1m5k
(ûnmv̂m 1 nûnv̂m)

1 i O
n1m5k6N

(ûnmv̂m 1 nûnv̂m). (3.9)ON21

j50
ei2fkj/N 5H0, if k 5/ 0,

N, if k 5 0,
Equation (3.9) can be simplified to yield

and, therefore,
N̂2(k) 5 ik O

n1m5k
ûnv̂m 1 i(k 6 N) O

n1m5k6N
ûnv̂m . (3.10)

E
Vx

w(x)dx R O
n1m50

ûnik9(m) f̂m 1 O
n1m56N

ûnik9(m) f̂m .
Clearly, in the absence of aliasing errors, (3.8) and (3.10)
are equivalent. Also, it can be easily shown that the aliasing(3.5)
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errors of N1 and N2 are of opposite signs [10, 11]. This
fact is exploited by the skew-symmetric form of the nonlin-
ear terms in the Navier–Stokes equations. Several studies
[5, 8, 10, 11] have shown that the skew-symmetric form of
the nonlinear terms is well-behaved even without dealias-
ing. The fact is that the skew-symmetric form reduces
aliasing errors, especially at the high wavenumbers. How-
ever, aliasing errors are still present in calculations and,
while being small and harmless in some simulations, they
can become substantial in others.

By Fourier transforming the nonlinear terms N1 and
N2 evaluated with a finite-difference method, we obtain

N̂1(k) 5 ik9(k) O
n1m5k

ûnv̂m 1 ik9(k) O
n1m5k6N

ûnv̂m (3.11)

FIG. 2. Dealiased and aliased Fourier coefficients of N1 and N2N̂2(k) 5 O
n1m5k

(ûnik9(m)v̂m 1 ik9(n)ûnv̂m)
computed with spectral method: (——) N1 and N2, dealiased; (–––) N1,
aliased; (- - -) N2, aliased; (? ? ?) Fourier coefficients of u and v.

1 O
n1m5k6N

(ûnik9(m)v̂m 1 ik9(n)ûnv̂m), (3.12)

one-dimensional domain 0 # x # 2f and assumed to have
where k9(k) is a modified wavenumber corresponding to the Fourier coefficients (shown in Fig. 2)
the finite-difference scheme. One can see that unless the
identity u(k) 5 v(k) 5 ÏE(k),

where E(k) is the von Karman spectrum defined ask9(n) 1 k9(m) 5 k9(n 1 m) (3.13)

E(k) 5
Ak4

(B 1 k2)17/6 ; (3.14)
holds, N1 and N2 are not the same even if the aliasing
errors are removed. Equation (3.13) does not hold for the
modified wavenumbers of the finite-difference methods, the values A 5 0.026828 and B 5 0.4167 are chosen so

that the spectrum has a maximum at k 5 1 and the valueand therefore (2.9) is not satisfied for the standard finite-
difference schemes on a nonstaggered grid. Finite-differ- of energy at this maximum is E(1) 5 0.01. The von Karman

spectrum is a good representation of high Reynolds num-ence methods can still be used with the rotational or skew-
symmetric forms of the nonlinear terms without violation ber turbulence spectrum.

Figure 2 shows the Fourier coefficients of the aliasedof the conservation properties but, in such simulations, the
problem of decoupling of the even and odd modes in the and dialiased nonlinear terms (3.6) and (3.7) computed

with the spectral method. As expected, the aliasing errorsPoisson equation for pressure arises [20]. An alternative
method of obtaining a conservative discretization in finite- contaminate mostly the high wavenumbers. The aliasing

errors increase the values of N̂1(k) and decrease the valuesdifference calculations and avoiding the ‘‘problem of de-
coupling’’ is to use a staggered grid [18, 20]. In the case of N̂2(k), as predicted by (3.8) and (3.10). The aliasing

errors of N1 and N2 as well as the average of the two,of a staggered grid, a modified version of (2.9) is used which
preserves the conservation properties, and it is possible to (N1 1 N2)/2, are shown in Fig. 3. As was pointed out

earlier, the aliasing error of (N1 1 N2)/2 (a one-dimen-obtain numerically stable solutions of the Navier–Stokes
equations with the divergence form of the nonlinear terms sional version of the skew-symmetric form of the nonlinear

terms in the Navier–Stokes equations) is smaller than thatwithout dealiasing. Many studies [18–21] have used the
second-order finite-difference scheme on a staggered grid of each of the component forms (N1 or N1) independently.

Figure 3 also shows the aliasing errors in the evaluationsto perform stable simulations of fluid flows. Recently, con-
servative higher order accurate finite-difference schemes of N1 or N2 with finite-difference methods, i.e., the second

terms in (3.8), (3.10), (3.11), and (3.12) normalized by thehave been proposed [22].
To illustrate the effect of aliasing errors in the calculation Fourier coefficients obtained with the dealiased spectral

method. Note that the nonlinear term N1 on a staggeredof nonlinear terms, we computed (3.6) and (3.7) using
various methods. The functions u and v are defined on a grid is evaluated as
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Equations (1.1) and (1.2) can be transformed into Fourier
space in the streamwise and spanwise directions to yield

­û
­t

5 Ĥu 2 ik91(kx)p̂ 1
1

Re S2k92
2(kx) 1

­2

­y2 2 k92
2(kz)D û

­v̂
­t

5 Ĥv 2
­p̂
­y

1
1

Re S2k92
2(kx) 1

­2

­y2 2 k92
2(kz)D v̂ (4.1)

­ŵ
­t

5 Ĥw 2 ik91(kz)p̂ 1
1

Re S2k92
2(kx) 1

­2

­y2 2 k92
2(kz)D ŵ

ik91(kx)û 1
­v̂
­y

1 ik91(kz)ŵ 5 0,

where k91(kx) and k91(kz) are modified wavenumbers corre-FIG. 3. Aliasing errors in evaluations of N1 or N2 with different
methods: (——) N1, spectral; (–––) N2, spectral; (- - -) N1, 2nd-order sponding to the first derivative approximations in the
FD; (? ? ?) N2, 2nd-order FD; (– ?–) N1, 2nd-order FD on a staggered streamwise and spanwise directions, respectively, and
grid; (– ? ?–) !s(N1 1 N2), spectral. k92(kx) and k92(kz) are modified wavenumbers correspond-

ing to the second-derivative approximations.
To eliminate pressure, (4.1) can be reduced to a fourth-

order equation for v, and to a second-order equation for
N1j11/2 5

u2
j11 2 u2

j

Dx
, the normal component of vorticity g:

where the overbar indicates averaging over the neigh- ­

­tS2k91
2 1

­2

­y2D v̂ 5 ĥv 1
1

ReS2k91
2 1

­2

­y2DS2k92
2 1

­2

­y2D v̂
boring points. The Fourier transform of N1 is then

­

­t
ĝ 5 ĥg 1

1
ReS2k92

2 1
­2

­y2D ĝN̂1(k)e2ikf/N 5 ik9s (k) O
n1m5k

ûnka(n)ûnka(m)

(3.15)
1 ik9s (k) O

n1m5k6N
ûnka(n)ûmka(m), f̂ 1

­v̂
­y

5 0,

wherewhere k9s (k) 5 2 sin(kDx/2)/Dx is a modified wavenumber
for a 2nd order staggered finite difference scheme and
ka(k) 5 cos(kDx/2) is an averaging factor. f̂ 5 ik91(kx)û 1 ik91(kz)ŵ, ĝ 5 ik91(kz)û 2 ik91(kx)ŵ,

In general, the Fourier coefficients of N1 and N2 com-
k91

2 5 k91
2(kx) 1 k91

2(kz), k92
2 5 k92

2(kx) 1 k92
2(kz),puted with finite-difference methods differ significantly

from those obtained by the dealiased spectral method.
However, the differences are mainly due to the truncation and
errors of the finite-difference schemes. The aliasing errors
of finite-difference methods are significantly smaller than

ĥv 5 2
­

­y
(ik91(kx)Ĥu 1 ik91(kz)Ĥw) 2 k91

2Ĥv ,those of spectral methods. The modified wavenumbers of
the finite-difference schemes tend to reduce aliasing errors

ĥg 5 ik91(kz)Ĥu 2 ik91(kx)Ĥw .especially at high wavenumbers. Also, the averaging fac-
tors ka(n) and ka(m) in staggered grid calculations make
the aliasing errors even smaller. Thus, one would expect At each time step, the equations for v and g are advanced
aliasing errors to be less important for finite-difference using an implicit Crank–Nicolson method for the viscous
simulations than for spectral calculations. terms and an explicit third-order Runge–Kutta method for

the nonlinear terms. Once v and g are obtained, the rest
of the variables are computed from the equations above.4. NUMERICAL TESTS

A series of aliased and dealiased computations of a fully
developed turbulent channel flow at Re 5 23,000 basedTo examine the effects of various errors, dynamical cal-

culations of turbulent flow in a channel were performed. on the centerline velocity Uc and the channel half-width d
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TABLE Iwere performed. For all cases, 48 3 64 3 48 grid points
were used in the streamwise, wall-normal, and spanwise Numerical Simulations of Turbulent Channel Flow Using
directions, respectively, in a computational domain of Spectral Method, 2nd-Order Finite Difference Method (FD2),
length 2fd, height 2d, and width f/2d. The grid was and 6th Order Padé Finite Difference Scheme (Pade6)
stretched in the wall-normal direction according to a hyper-

Aliased Dealiasedbolic tangent stretching function. The mesh spacings in
wall units were Dx1 5 Dxut/n P 130, Dy1

min P 0.5, Nonlinear terms Spectral FD2 Pade6 Spectral FD2 Pade6
Dy1

max P 110, and Dz1 P 33 where ut 5 Ïtw/r is the wall
Rotational Q ? ? ? ? ?shear velocity. Even though the grid resolution in the near-
Divergence q q1 q ? q1 qwall region is fairly coarse for finite-difference simulations,
Skew-symmetric ? ? ? ? ? ?it is appropriate for our purposes of investigating the ef-

fects of numerical errors. The mesh provides marginal reso- Note. (?) Stable; (q) numerically unstable; (q1) numerically unstable
lution for spectral large-eddy simulations. on a nonstaggered grid but stable on a staggered grid; (Q) flow lami-

narizes.The first computation was initialized as

u(x, y, z, t) 5 1 2 y2 1 «u9,

prevent the method from being energy conserving. How-v(x, y, z, t) 5 «v9, (4.2)
ever, numerical simulations with the rotational or skew-

w(x, y, z, t) 5 «w9, symmetric forms of the nonlinear terms are numerically
stable even in the presence of aliasing errors since the

where u9, v9, and w9 are random numbers scaled to vary conservation properties are not violated. In the case of
between 21 and 1 and « 5 0.1. The computation was aliased spectral calculations with the rotational form of the
carried out with dealiased spectral method until a turbulent nonlinear terms, the flow laminarizes. These results are
mean velocity profile was obtained. The resulted flow field in agreement with computations of the previous studies
was used as an initial condition for all simulations. Typical [5, 8, 9]. The laminarization takes place even when the
computations required six nondimensional time units order of the B-splines (i.e., the accuracy of the method in
(tut/d) to reach a statistically steady state and approxi- the normal direction) is increased. On the other hand,
mately six additional time units to accumulate statistics. the simulations are stable when the aliasing errors are
All simulations were performed with a fixed mass flow. removed. Figure 4 displays the mean-velocity profiles of
Three forms of the nonlinear terms were used: rotational, turbulent channel flow obtained with the spectral method.
skew-symmetric, and divergence. Initially, the computer The LES results of the dealiased spectral calculations are
code was written with spectral methods in homogeneous identical for the rotational, skew-symmetric, and diver-
directions. The nonlinear terms were computed pseudo-
spectrally [4]. Dealiasing was implemented by expanding
the number of collocation points by a factor of #s before
transformation into the physical space. The code was then
converted to the one with finite-difference methods in peri-
odic directions using modified wavenumbers (instead of
the Fourier wavenumbers) corresponding to each finite-
difference scheme. In a similar manner, a staggered grid
was implemented using grid shift factors to multiply the
Fourier modes of the variables before calculating the non-
linear terms. The dynamic subgrid scale model [23] was
used to account for unresolved turbulence scales in large-
eddy simulations. Both test filtering and averaging of the
equations for the model coefficient were performed in ho-
mogeneous directions. The ratio of the test-filter width to
the grid-filter width was 2 in all simulations. To study the
effect of the subgrid scale model, we performed simulations
with and without a model.

FIG. 4. Mean velocity profile of fully developed turbulent channelThe results of simulations are summarized in Table 1.
flow at Rec 5 23,000 obtained with dealiased spectral method in x and

The aliased spectral calculations with the divergence form z: (——) 2nd-order B-spines in y; (–––) 4th-order B-splines in y; (? ? ?)
of the nonlinear terms are numerically unstable, which without SGS model; (h) experiment Rec 5 23,191 [24]; (s) experiment,

Rec 5 22,776 [25].is consistent with the conclusions above. Aliasing errors
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FIG. 6. Mean velocity profile of fully developed turbulent channel
flow. Results are obtained using 2nd finite difference method with theFIG. 5. Root-mean-square velocity fluctuations normalized by the

wall shear velocity obtained with dealiased spectral method in x and z: rotational form of the nonlinear terms: (——) dealiased with SGS model;
(–––) aliased with SGS model; (- - -) dealiased without SGS model; (? ? ?)(——) urms; (–––) vrms; (- - -) wrms; (n) Exper. urms [24], Rec 5 23,191; (s)

Exper. urms; (h) Exper. vrms [25], Rec 5 22,776. aliased without SGS model; (s) spectral dealiased.

gence forms of the nonlinear terms since these forms are respectively. The rotational form of the nonlinear terms
numerically equivalent when aliasing errors are removed. was used in these cases. Even though the effect of the
Only spectral results for the rotational form are shown in aliasing errors is not as strong as in the spectral simulations,
Fig. 4. The results of simulations without the subgrid scale there is still a noticeable change in the results due to
model are very poor but they improve significantly when aliasing errors, especially in the profiles of the mean veloc-
the model is used. There is a very good agreement between ity. However, the large truncation errors in the near-wall
the mean velocity profiles of the dealiased spectral LES region of the second-order finite-difference discretizations
and the experiments. The resolved turbulence intensities of the rotational form [8] have a more damaging effect on
shown in Fig. 5 are in fair agreement with the experimental the simulations than the aliasing errors. All mean-velocity
data due to the marginal near-wall resolution. It also ap- profiles have incorrect slopes and show poor agreement
pears that the second-order B-splines provide sufficient with the spectral data. The spanwise velocity fluctuations
accuracy in the wall-normal direction; there are no signifi-
cant changes in the results when higher order B-splines
are used, as shown in Fig. 4.

The finite-difference simulations on a nonstaggered grid
are numerically unstable when the divergence form of the
nonlinear terms is used. Unlike the spectral method, the
finite-difference schemes are numerically unstable even
when aliasing errors are removed. This result is expected
since (2.9) is not satisfied and the finite-difference discreti-
zation is not energy conserving. The finite-difference simu-
lations on a nonstaggered grid with the rotational and
skew-symmetric forms of the nonlienar terms and on a
staggered grid with the divergence form of the nonlinear
terms are all stable. In these cases, the numerical discreti-
zations conserve both momentum and energy. Since no
explicit Poisson equation for pressure is solved in the pres-
ent formulation, the computations on nonstaggered grid do
not have the ‘‘problem of decoupling’’ mentioned earlier.

The mean velocity profiles and the root-mean-square
FIG. 7. Root-mean-square velocity fluctuations normalized by the

velocity fluctuations normalized by the wall shear velocity wall shear velocity. Results are obtained using 2nd order finite difference
obtained with the second-order finite-difference simula- method with the rotational form of the nonlinear terms. See caption of

Fig. 6 for details.tions on a nonstaggered grid are shown in Figs. 6 and 7,
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FIG. 8. Mean velocity profile of turbulent channel flow simulations
FIG. 9. Root-mean-square velocity fluctuations normalized by thewith sixth order Padé scheme and the rotational form of the nonlinear

wall shear velocity. Results are obtained using sixth order Padé schemeterms. See caption of Fig. 6 for details.
with the rotational form of the nonlinear terms. See caption of Fig. 6
for details.

exhibit incorrect behavior in the near-wall region and the
peak of the streamwise velocity fluctuations is higher than performance of the subgrid scale model. The results of
that of the spectral data. It also appears that the truncation simulations with the model are better than those when the
errors have an impact on the performance of the subgrid model is turned off. This is especially pronounced in the
scale model. Even when the aliasing errors are removed profiles of the spanwise and normal components of turbu-
the results with the subgrid scale model do not improve lence intensities in Fig. 9.
significantly. There is a slight change in the profiles of the Figures 10 and 11 display the mean-velocity profiles and
mean velocity and the turbulence intensities, urms and wrms , turbulence intensities obtained with the second-order fi-
but, overall, the truncation errors overwhelm the subgrid nite-difference schemes on a staggered grid. Dealiased re-
scale model terms in these cases. This is also in agreement sults in these cases appear to be better than those in aliased
with the analysis of Ghosal [12], who showed that the finite- calculations. In fact, the mean-velocity profile in the de-
difference error of a second-order scheme is significantly aliased LES calculations is in good agreement with the
larger than the subgrid scale term over most of the resolved spectral result and there is significant improvement in the
wave-number range. turbulence intensities. Also, the difference between the sim-

Figures 8 and 9 show the mean velocity profiles and the
velocity fluctuations in simulations with a sixth-order Padé
scheme [16]. In these cases, the effect of aliasing errors is
greater than that in the low-order finite-difference simula-
tions but is still not as pronounced as in the spectral calcula-
tions. The aliased mean-velocity profiles have an incorrect
slope but the flow is still turbulent. Even though the de-
aliased mean-velocity profile of this scheme appears as far
from the log law as that of the second-order finite differ-
ence method, the turbulence intensities of the sixth-order
Padé scheme are in better agreement with the spectral and
experimental results. A stronger effect of aliasing errors in
the sixth-order Padé scheme calculations and a somewhat
better performance of this scheme when these errors are
removed is expected since the modified wave number curve
of this scheme follows that of the spectral method over a
wide range of scales. Since aliasing errors are mostly active
at the high wave numbers, the Padé scheme is more vulner- FIG. 10. Mean velocity profile of turbulent channel flow simulations
able to these errors than the low-order finite-difference with 2nd order finite difference method and the divergence form of the

nonlinear terms on a staggered grid. See caption of Fig. 6 for details.schemes. There is also a noticeable improvement in the
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FIG. 12. Mean velocity profile of turbulent channel flow simulations
using various methods with the skew-symmetric form of the nonlinearFIG. 11. Root-mean-square velocity fluctations normalized by the

wall shear velocity. Results are obtained using 2nd order finite difference terms: (–––) 2nd order finite difference; (? ? ?) 4th order finite difference;
(——) 6th order Padé; (s) spectral.method with the divergence form of the nonlinear terms on a staggered

grid. See caption of Fig. 6 for details.

results due to the spectral-like resolution of this schemeulations with and without the subgrid scale model is larger
over a wide range of wavenumbers. As expected, the resultswhen aliasing errors are removed. This observation seems
of the fourth-order scheme fall between the results of sec-to be in contradiction with an earlier conclusion that
ond- and sixth-order methods. The effect of the truncationaliasing errors have little effect in simulations with a sec-
errors is consistent with the behavior observed in the simu-ond-order finite-difference scheme. When dealiased, the
lations with the other forms of the nonlinear terms. Thevelocity products and averaging associated with a staggered
second-order scheme does not perform well because of thegrid implementation are performed on a grid expanded in
large truncation errors. The profiles of the mean velocitythe streamwise and spanwise directions by a factor of 3/2.
and the streamwise velocity fluctuations obtained with theTo preserve numerical momentum and energy conserva-
second-order method lie above the spectral data. Note thattion, the derivatives are evaluated with modified wave
the results of the second-order finite-difference simulationsnumbers corresponding to the expanded grid. For example,
are different for various forms of the nonlinear terms duethe averaging factor associated with the expanded grid

in the streamwise direction is ka(k) 5 cos(kDx/3) (com-
pare with ka(k) 5 cos(kDx/2) in aliased computations).
The corresponding modified wave number is k9s(k) 5
3 sin(kDx/3)/Dx (compare with k9s(k) 5 2 sin(kDx/2)/Dx
in aliased computations). Therefore, dealiasing on a stag-
gered grid reduces the truncation errors, allowing the effect
of the subgrid scale model to be more pronounced. This
also explains why the difference between the aliased and
dealiased results is greater in the simulations on the stag-
gered grid than on the nonstaggered grid.

The effect of truncation errors is investigated in detail in
simulations with the skew-symmetric form. As mentioned
above, this form produces small aliasing errors and their
effect is expected to be negligible. Figure 12 shows the
mean velocity profiles and Fig. 13 shows turbulence intensi-
ties normalized by the wall shear velocity obtained with
finite-difference methods of various orders. As expected,
the difference between the aliased and dealiased simula-

FIG. 13. Root-mean-square velocity fluctuations normalized by the
tions was small in all cases and we show only the aliased wall shear velocity in simulations using various methods with the skew-
results. The results of the sixth-order Padé scheme are in symmetric form of the nonlinear terms: (–––) 2nd order finite difference;

(? ? ?) 4th order finite difference; (——) 6th order Padé; (s) spectral.a good agreement with the experiment and the spectral
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FIG. 14. Ratio of subgrid-scale dissipation to total dissipation in simu-
lations with the skew-symmetric form of the nonlinear terms: (–––) 2nd FIG. 15. Mean velocity profile of turbulent channel flow simulations
order finite difference; (? ? ?) 4th order finite difference; (- - -) 6th order using various methods with the skew-symmetric form of the nonlinear
Padé; (——) spectral. terms: (–––) 2nd order finite difference with SGS model; (? ? ?) 2nd order

finite difference without SGS model; (——) 6th order Padé with SGS
model; (- - -) 6th order Padé without SGS model; (s) spectral LES.

to the different truncation errors, but they all have common
features. The slopes of the mean-velocity profiles are ap-

understand why the magnitude of the subgrid scale termsproximately the same and the peak of the streamwise veloc-
in the low-order finite-difference simulations is smallerity component of the turbulence fluctuations is larger than
than that in spectral or sixth-order Padé scheme calcula-that in the spectral simulations.
tions. The dynamic subgrid scale model computes its coef-The performance of the subgrid scale model can also be
ficients by sampling information in the high wavenumberevaluated by considering its dissipation properties. Figure
part of the spectrum. However, this part of the spectrum14 shows the ratio of the subgrid scale dissipation to the
is heavily distorted by the numerical errors. A smalltotal dissipation in simulations with the skew-symmetric
amount of energy at the high wavenumbers in the low-form. The profiles in Fig. 14 are compared against the
order finite-difference simulations translates into a smallspectral results. In the case of spectral simulations, the

subgrid scale dissipation contributes up to 48% of the total
dissipation and the model significantly improves the re-
sults, which is also observed in the mean velocity profile
in Fig. 4. In contrast, the effect of the subgrid scale model
is relatively small in the simulations with the 2nd order
scheme and less pronounced in the profiles of the mean
velocity and the turbulence intensities in Figs. 15 and 16,
where the results with and without the subgrid scale model
are displayed. The contribution of the model is more sig-
nificant in the simulations with the sixth-order Padé
scheme.

The one-dimensional energy spectra are shown in Fig.
17. The spectra shown are from the computations with the
skew-symmetric form, but similar trends are observed in
simulations with the other forms of the nonlinear terms.
Once again, the smaller the truncation errors, the more
relevant the information at the high wave numbers in the
energy spectrum is. Thus, the energy spectrum for the

FIG. 16. Root-mean-square velocity fluctuations normalized by thesixth-order Padé scheme is closer to the spectral results
wall shear velocity in simulations using various methods with the skew-over a wider range of wavenumbers than that for the sec-
symmetric form of the nonlinear terms: (–––) 2nd order finite difference

ond-order finite difference method which is consistent with with SGS model; (? ? ?) 2nd order finite difference without SGS model;
the analysis of the modified wavenumbers for these (——) 6th order Padé with SGS model; (- - -) 6th order Padé without

SGS model; (s) spectral LES.schemes. Examination of the energy spectra helps us to
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APPENDIX: MODIFIED WAVENUMBERS

The modified wavenumber corresponding to the evalua-
tion of the first derivative with the 2nd-order central finite-
difference scheme is:

k9(k) 5
sin(kDx)

Dx
.

For the second derivative,

k92(k) 5
2(1 2 cos(kDx))

Dx2 .

The modified wavenumber corresponding to the evalua-
tion of the first derivative with the 4th-order central finite-

FIG. 17. One-dimensional energy spectra at y1 P 15 in LES: (——) difference scheme is:
spectral; (–––) 2nd order finite difference; (- - -) 6th order Padé scheme;
(a) streamwise; (b) spanwise.

k9(k) 5
sin(kDx)(4 2 cos(kDx))

3Dx
.

subgrid scale coefficient and, as a result, the contribution For the second derivative,
of the subgrid scale model is small.

k92(k) 5
15 2 16 cos(kDx) 1 cos(2kDx)

6Dx2 .5. CONCLUSIONS

In this paper, numerical simulations of a turbulent chan- The modified wavenumber corresponding to the evalua-
nel flow were performed using spectral and various order tion of the first derivative with the 6th-order Padé scheme is
finite-difference methods to study the effect of aliasing
and truncation errors. It was shown both analytically and

k9(k) 5
a sin(kDx) 1 b/2 sin(2kDx)

Dx[1 1 2a cos(kDx)]
,numerically that the numerical errors had different effects

for different formulations of the nonlinear terms in the
Navier–Stokes equations. The skew-symmetric form, for

where the constants are a 5 1/3, a 5 14/9, and b 5 1/9.example, has the smallest aliasing error and the differences
For the second derivative,between the results of aliased and dealiased simulations

with this formulation of the nonlinear terms were minimal.
On the other hand, the rotational form of the nonlinear k92(k) 5

2a(1 2 cos(kDx)) 1 b/2(1 2 cos(2kDx))
Dx2[1 1 2a cos(kDx)]

,
terms has the largest aliasing error. In the case of finite-
difference simulations, the difference between aliased and

where the constants are a 5 2/11, a 5 12/11, and b 5 3/11.dealiased results is small for low-order schemes but be-
comes larger when the order of the scheme is increased.
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